13.4 Videos Guide

13.4a

- Describing motion
 - Position: $\mathbf{r}(t)$
 - Velocity: $\mathbf{v}(t) = \mathbf{r}'(t)$
 - Speed: $|\mathbf{r}'(t)|$
 - Acceleration: $\mathbf{a}(t) = \mathbf{r}''(t)$
- Equations for the motion of a projectile in \mathbb{R}^2 with initial velocity v_0 and angle α with the horizontal

•
$$x = (v_0 \cos \alpha)t$$
, $y = h_0 + (v_0 \sin \alpha)t - \frac{1}{2}gt^2$

Exercises:

13.4b

• Find the velocity, acceleration, and speed of a particle with the given position function. Sketch the path of the particle and draw the velocity and acceleration vectors for the specified value of *t*.

$$\mathbf{r}(t) = \langle t^2, \frac{1}{t^2} \rangle, \qquad t = 1$$

13.4c

• Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position.

 $a(t) = \sin t i + 2\cos t j + 6t k$, v(0) = -k, r(0) = j - 4k

13.4d

• Tangential and normal components of acceleration

•
$$\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}$$
, where $a_T = \frac{\mathbf{r'} \cdot \mathbf{r''}}{|\mathbf{r'}|}$ and $a_N = \frac{|\mathbf{r'} \times \mathbf{r''}|}{|\mathbf{r'}|}$

Exercises:

13.4e

Find the tangential and normal components of the acceleration vector.
r(t) = t i + 2e^t j + e^{2t} k

13.4f

• A projectile is fired from a tank with initial sped 400 m/s. Find two angles of elevation that can be used to hit a target 300 m away.